ЭКОЛОГИЧЕСКОЕ ИНФОРМАГЕНТСТВО
Новости экологии России и зарубежья

В России создан ажурный углеродный сорбент для поглощения нефти

В качестве сырья для его производства можно использовать отходы нефтепереработки

Углеродный материал с ячеистой структурой (углеродную пену, пеноуглерод) для эффективного поглощения нефти с поверхности воды создали ученые из Центра новых химических технологий ФИЦ «Институт катализа СО РАН». Заявлено, что его эффективность минимум вдвое выше, чем у существующих сорбентов. Кроме того, у материала есть значительные преимущество перед аналогами — возможность использовать в качестве сырья для его производства отходы нефтепереработки, а также простой синтез, который проводят при атмосферном давлении без добавления пенообразователей.

Как сообщили исследователи, углеродный материал с ячеистой структурой сочетает в себе присущую углероду в отсутствие воздуха высокую термическую и химическую стойкость, а благодаря «ажурности» трехмерной структуры — низкую плотность и высокоразвитую внешнюю поверхность. Углеродная пена имеет упорядоченную структуру ячеек, которая хорошо видна невооруженным взглядом. Размер ячеек, плотность, прочность и другие характеристики пеноуглерода можно варьировать в зависимости от используемого сырья и метода синтеза. Благодаря набору уникальных свойств, пеноуглерод используют в медицине, авиа- и ракетостроении, строительстве.

Ученые Центра новых химических технологий (ЦНХТ) ИК СО РАН создали пеноуглерод на основе пропан-бутановой смеси. Они получили суперлегкий материал как закрытой, так и открытой ячеистой структуры плотностью 0,02 г/см3. Он состоит из чистого углерода, без каких-либо примесей. Исследования показали, что в качестве сырья для его производства можно использовать различные тяжелые нефтяные фракции, в том числе отходы нефтепереработки.

— Мы взяли техническую пропан-бутановую смесь — один из товарных продуктов нефте- и газопереработки, — рассказала один из авторов исследования, младший научный сотрудник отдела каталитических превращений ЦНХТ ИК СО РАН Евгения Райская. — Методом пиролиза из этих газов получают алкены, а образующиеся при этом жидкие пиролизные смолы становятся побочным нежелательным продуктом. В нашем процессе жидкие продукты пиролиза углеводородных газов являются продуктом целевым — предшественником пеноуглерода. Если развивать технологию, то пеноуглерод можно будет получать в промышленных масштабах, вторично используя многотоннажные технические отходы, и он будет доступным.

Полученный пеноуглерод имеет такую степень чистоты, что его можно использовать в медицине. Но ученые сосредоточились на экологическом приложении материала — сорбции нефти и нефтепродуктов с поверхности воды. Разливы нефти — серьезная проблема для окружающей среды, они постоянно случаются по всему миру в разных объемах. Например, при одном из разливов в 2022 году в США в воду попало 14 тысяч баррелей (1,9 тысяч тонн) нефти.

— Углеродная пена — очень эффективный сорбент, — отметила Райская. — Нефть заполняет большой внутренний объем материала, а низкая плотность и гидрофобность обеспечивают длительную плавучесть такого пеноуглерода на поверхности воды. Высокая химическая и структурная однородность полученной углеродной пены обеспечивает хорошую термостойкость и регенерируемость сорбента. После использования пеноуглерод с абсорбированной нефтью прокаливают на воздухе при температуре до 550 ℃ — основная часть нефти сгорает, а материал можно использовать снова. Наша пена выдерживает десятки таких циклов при извлечении из воды нефти, бензина и дизельного топлива», — говорит Райская. Сорбционная емкость материала очень высокая: 1 грамм сорбента способен впитать 20 граммов нефти, в то время как традиционные сорбенты способны поглотить не более 10 граммов.

Еще одно приложение, где можно использовать пеноуглерод — катализ. Материал не только термостойкий, но и устойчивый к кислотам. Он работает в агрессивных средах и не разрушается даже при выдержке в концентрированной серной кислоте. Кроме того, структура углеродной пены обеспечивает низкое сопротивление движению высокоскоростных потоков, что важно для уменьшения времени контакта и повышения селективности в многостадийных каталитических реакциях.

Отметим, что пеноуглерод различного строения как новый материал появился в 1970-х годах. С тех пор группы ученых из разных стран разрабатывают свои способы получения углеродной пены и изменения ее свойств. По словам соавтора работы, ведущего научного сотрудника отдела каталитических превращений ЦНХТ ИК СО РАН, к.х.н. Ольги Бельской, методов синтеза углеродной пены и видов сырья для нее очень много.

— Материалы получают из тяжелых продуктов нефтепереработки, оксида графита, полимеров, растительной массы, — отметила она. — В качестве способов используют сборку графеновых слоев, сжатие и сброс давления, темплатную карбонизацию и т.д. Эти способы требуют нескольких стадий, специальных условий и дополнительных реагентов.

Синтез углеродной пены в Центре новых химических технологий ИК СО РАН проводят в две стадии при атмосферном давлении без добавления вспенивателей. Сначала пропан-бутановую смесь нагревают при 850℃ для образования пиролизных смол — полиароматических молекул. В определенных условиях происходит конденсация этих молекул и их определенная ориентация с образованием так называемой мезофазы. Она и становится предшественником пеноуглерода.

На следующей стадии — вспенивании – углеводородные цепочки, связывающие полиароматические слои, отрываются, и образуются газовые пузыри.

— Слои становятся подвижными и обволакивают эти пузыри, — рассказала Бельская. — Этот процесс можно сравнить с образованием мыльной пены. Вспенивание происходит при высокой температуре и сопровождается карбонизацией. В общем, формирование мезофазного предшественника, содержащего одновременно газо- и структурообразующие компоненты, — это ключевая стадия технологии.

Ученый отмечает, что мезофазный предшественник необходимого состава можно получить не только из пропан-бутановой смеси, но и из других углеводородных фракций (в том числе побочных продуктов производств), где есть поликонденсированные ароматические молекулы. Это открывает перспективы для масштабирования синтеза пеноуглерода.

Комментарии закрыты.

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Принимаю Читать больше